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The model space

• Large model space of different theories, even within
scalar-tensor theories.

• Efficiently computing observational consequences of each
theory is challenging.

• Effective Field Theory of Dark Energy gives an efficient
exploration of the model space.



Horndeski Theory

• Add a scalar field into Einstein’s gravity.

• Most general, local, Lorentz covariant, four-dimensional
scalar-tensor theory with second order equations of motion.

• Dilaton from string theory, compactified internal spaces,
extra dimensions, brane worlds...



Horndeski Theory

S =

5∑
i=2

∫
d4x
√
−gLi ,

L2 ≡ G2(φ,X) ,

L3 ≡ G3(φ,X)�φ ,

L4 ≡ G4(φ,X)R

−2G4X(φ,X)
[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
,

L5 ≡ G5(φ,X)Gµν∇µ∇νφ

+
1

3
G5X(φ,X)

[
(�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+2(∇µ∇νφ)(∇σ∇νφ)(∇σ∇µφ)] ,

where X = gµν∂µφ∂νφ.



Effective field theory of Dark Energy (EFTofDE)

• Generalized and efficient approach to testing different
theories.

• Unitary gauge: ADM decomposition with φ = tM2
∗ . Then

X = (−1 + δg00)M2
∗ .

S = S(0,1) + S(2) + SM [gµν , ψ] ,

S(0,1) =
M2
∗

2

∫
d4x
√
−g [Ω(t)R ]

• Ω(t) = 1⇒ Einstein gravity.
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• Ω(t) = 1⇒ Einstein gravity. Λ(t) = Λ⇒ ΛCDM.



Effective field theory of Dark Energy (EFTofDE)

• Generalized and efficient approach to testing different
theories.

• Unitary gauge: ADM decomposition with φ = tM2
∗ . Then

X = (−1 + δg00)M2
∗ .

S = S(0,1) + S(2) + SM [gµν , ψ] ,

S(0,1) =
M2
∗
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∫
d4x
√
−g
[
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]
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• Ω(t) = 1⇒ Einstein gravity. Λ(t) = Λ⇒ ΛCDM.

• Γ = M2
∗ ⇒ Quintessence.



Effective field theory of Dark Energy (EFTofDE)

• Generalized and efficient approach to testing different
theories.

S = S(0,1) + S(2) + SM [gµν , ψ] ,

S(0,1) =
M2
∗

2

∫
d4x
√
−g
[
Ω(t)R− 2Λ(t)− Γ(t)δg00

]
.

S(2) =

∫
d4x
√
−g
[

1

2
M4

2 (t)(δg00)2 − 1

2
M̄3

1 (t)δKδg00

−M̄2
2 (t)

(
δK2 − δKµνδKµν −

1

2
δR(3)δg00

)]
,

• Ghost condensate, DGP, khronon, kinetic braiding,
k-essence, galileon, Horndeski...

• With H(t) that’s now only seven free functions.



Alternative description of EFT functions

• Can go to another basis for the EFT functions,
αM , αB, αK , αT , which have a more physical motivation.

• Expansion history H(t) fixed. Looking for probes of
modified gravity at the level of linear perturbations.

• Two descriptions related via a linear transformation e.g.

Ω =
M2

M2
∗
c2
T , M̄

2
2 = −1

2
M2αT ,

M̄3
1 = M2

[
HαMc

2
T + α̇T − 2HαB

]
.



Reconstructing Covariant theories

• The EFT functions Ω, Γ, M̄2
2 etc are phenomenological

functions.

• Given constraints on the phenomenological EFT functions,
what can we say about the space of covariant theories?

• Reconstruct the class of covariant Horndeski models that
are equivalent at the level of the background and linear
perturbations.
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Reconstructing Covariant theories

• Class of Horndeski theories that correspond to the EFT of
DE at the level of background and linear perturbations.

G2(φ,X) =−M2
∗U(φ)− 1

2
M2
∗Z(φ)X + a2(φ)X2

+ ∆G2 ,

G3(φ,X) = b0(φ) + b1(φ)X + ∆G3 ,

G4(φ,X) =
1

2
M2
∗F (φ) + c1(φ)X + ∆G4 ,

G5(φ,X) = ∆G5 ,



The Reconstruction

• For example

U(φ) = Λ +
Γ

2
− M4

2

2M2
∗
− 9HM̄3

1

8M2
∗
− (M̄3

1 )′

8
+
M2
∗ (M̄2

2 )′′

4
+ . . . ,

Z(φ) =
Γ

M4
∗
− 2M4

2

M6
∗
− 3HM̄3

1

2M6
∗

+
(M̄3

1 )′

2M4
∗
− (M̄2

2 )′′

M2
∗

+ . . . ,

F (φ) = Ω +
M̄2

2

M2
∗
, c1(φ) =

M̄2
2

2M4
∗
.

Similar expressions for other terms in the reconstructed action.



Non-linear corrections

• Such a reconstruction cannot be unique. Each ∆Gi
quantifies the non-linear corrections that one can make to
move to an action that is degenerate at background and
linear level.

∆G2,3 =
∑
n>2

ξ(2,3)n (φ)

(
1 +

X

M4
∗

)n
,

∆G4,5 =
∑
n>3

ξ(4,5)n (φ)

(
1 +

X

M4
∗

)n
.

• Each ξ(i)n (φ) is a free function of φ.



Derivation - Zeroth and first order

• Note the correspondence at the linear level

δg00 = 1 +X/M4
∗ .

• Starting from the background and first order action with
Ω = 1 we find that

S
(0,1)
Ω=1 =

∫
d4x
√
−g
{
M2
∗

2
R−M2

∗Λ(φ)− M2
∗

2
Γ(φ)− Γ(φ)

2M2
∗
X

}
.

• This corresponds to a quintessence model in non-canonical
form. Can perform a field re-definition to make it
canonical.



Derivation - Quadratic order

• Choose a term involving Xn�φ. For simplicity choose
n = 1. In the unitary gauge this becomes

M−6
∗ `3(φ)X�φ =

[
˙̀
3(t)− 3`3(t)H

]
g00 − `3(t)δg00δK

− 3`3(t)H +
3H

4
`3(t)(δg00)2

− 1

4
˙̀(t)(δg00)2 . (1)

• Move all terms apart from δg00δK to the left hand side,
and make replacement δg00 = 1 +X/M4

∗ .



Derivation - Quadratic order

• Identify `3(t) ≡ 1
2M̄

3
1 (t)M−6

∗ . One obtains the action

S =

∫
d4x
√
−g
{

9HM̄3
1

8
+
M2
∗ (M̄3

1 )′

8
+

M̄3
1

2M6
∗
X�φ

+

[
3HM̄3

1

4M4
∗
− (M̄3

1 )′

4M2
∗

]
X +

[
(M̄3

1 )′

8M6
∗
− 3HM̄3

1

8M8
∗

]
X2

}
, (2)

• This action is constructed such that it reduces to
−1

2M̄
3
1 (t)δg00δK in the unitary gauge. All of the

background and linear contributions cancel.



Examples

Assume the EFT functions are measured as

M2
∗Γ(t) = 4M4

2 (t) = 3H(t)M̄3
1 (t) = −λH(t) ,

Ω(t) = exp(−2M∗t) ,

The covariant action that this corresponds to:

L =
M2
∗

2
e−2φ/M∗R− r2

c

M∗
X�φ+ LM ,

with λ = 6M5
∗ r

2
c .
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Restricting model space with reconstruction

• Consider the case of αT = 0. This corresponds to M̄2
2 = 0.

• Using the reconstruction we find that this implies
c1(φ) = 0.

• On linear scales G4(φ,X)→ G4(φ).
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Plots

• Can reconstruct particular parametrizations, for example
αi(t) = ciΩΛ(t). Choose observationally constrained values
(Bellini et al 2016), ensuring stability c2

s > 0, c2
T > 0 etc
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Summary

• EFTofDE provides a generalized and efficient exploration
of the parameter space.

• Provided a reconstruction from EFT back to the space of
manifestly covariant theories, e.g. U(φ) 1705.09290.

• Can explore the theory space probed by different
parametrizations of the EFT functions.

• Are the theories described by EFT guaranteed to have an
Einstein gravity limit?

• Long term aim: connect observables to theories.

µ(a, k) , γ(a, k)→
∫
d4x
√
−g {???}



Stability conditions

• There exist certain conditions within EFT that need to be
satisfied in order for the theory to be theoretically stable.
E.g. no ghost or gradient instabilities.

• Can one find a parametrization of the EFT functions that
correspond directly to a stable theory.

• The reconstructed action within this space of theories is
then guaranteed to be theoretically stable.



Plots



Screening conditions

• Are the theories described by the EFT of dark energy
guaranteed to have an Einstein limit.



• Construct a covariant scalar-tensor theory that leads to
weak gravity.


